
  
Abstract—This paper explains the design and simulation of 

basic blocks to build a mixed-signal current mode artificial 
neural network: a class AB current follower, a four quadrant 
multiplier using a transistor-based current divider and a class 
AB current mode activation function.  Also the simulation 
results of a neural network model, made up of processors using 
these elements applied to a small sensor linearization problem 
are presented.  System simulation results and application 
performance applied to four different temperature sensor 
samples are shown. 

 
Index Terms—Mixed-Mode Artificial Neuron, Mixed-Mode 

Four-Quadrant Multipliers, Current-Mode Activation 
Function, Analog Sensor Linearization. 

I. INTRODUCTION 
RTIFICIAL Neural Networks (ANNs) are computing 
tools based on the mammalian nervous system 

operation.  Basically it consists of small processing 
elements, called artificial neurons, highly interconnected 
and arranged in layers.  The input-output function carried 
out by these systems is learned by means of a training 
process where input-output data pairs are iteratively 
presented, adjusting the system free parameters (called 
weights) that connect inputs from a neuron layer with the 
preceding neuron layer outputs.  ANNs can be implemented 
in several ways, depending on the application requirements.  
Thus, in systems where size, power consumption and speed 
are main requirements, electronic analog implementation is 
a suitable selection [1].  Today, shrink bias voltages make 
difficult to processing high resolution data in voltage-mode.  
In this case, current-mode processing gives better results at 
lower bias, reducing the power consumption [2]. 

On the other hand, analog implementation of reliable 
long-term and mid-term analog programmable weights 
results very hard due to mismatching and offsets.  Due to 
the high accuracy of digital storing data for long and mid-
term in register-based structures, the combination of both 
electronic technologies can improve the system features.  
Previous works [3] have presented the use of mixed-mode 
multipliers in artificial neuron implementation, showing 
promising results applied to real problems. 

In Section II this paper presents the proposed design of 
the building blocks of a current mode class AB digital 
weight neuron; Section III presents simulation results of an 
architecture of a mixed signal artificial neural network made 

 
 

up with these elements; Section IV shows the results of 
applying this neuron model to a real problem, the 
linearization of a negative temperature coefficient resistor 
(NTC); Finally the conclusions of this work and future work 
are presented. 

II. BUILDING BLOCKS IMPLEMENTATION 
The proposed neuron building blocks have been 

implemented using the Austria Microsystems (AMS) 
0.35µm design kit.  Maximum processing currents are 
limited to ±50µA, voltage bias are limited to 3.3V in the 
inverters and ±2V in the rest of the multiplier structure. 

A. Mixed Signal Four-Quadrant Multiplier 
The proposed multiplier structure can be seen in Fig. 1.  It 

is composed of a 7-bit digitally programmable current 
divider, a class AB current follower, whose scheme is 
shown in Fig. 2 and a multiplexer that controls the current 
path according to the sign bit of the digital operand.  When 
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Fig. 2. Class AB current follower. 
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the weight sign bit is positive (b0=0V), current goes to the 
divider straight, but if sign bit is negative (b0=3.3V), current 
is driven through the current follower in order to change its 
direction.  Current output ranges from Iin to –Iin. 
1)  Programmable Current Divider 

The main four-quadrant multiplier building block consists 
of an R-2R ladder structure [4] implemented with NMOS 
transistors.  This structure (Fig. 1), widely presented in the 
literature [5], [6], [7] allows the current to flow in both 
directions and is designed using identical 0.3µm length and 
10µm width transistors working in triode mode.  Gate 
voltages bi (Fig. 1) control the current flow through the 
right-side transistors (bi=0V) or through the left-side 
transistor (bi=3.3V).  For N bits, output current is described 
according to 
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where Iout1 and Iout2 are the lower and upper output currents.  
In our work, Iout2 has been selected as the final output 
current.  Thus, according to (2), digital weight absolute ideal 
value ranges from 0 to 1-1/2N.  Assuming a seven bits plus 
sign weight representation, theoretical digital operand 
minimum module value equals to 7.8125·10-3. 
2) Current Follower 

Multiplier sign bit is implemented using a class AB 
current follower scheme presented in [8] (Fig. 2).  This 
structure gives a zero centred low-distortion current 
follower using a ± 2V bias voltage.  Tables I and II show the 
current follower design characteristics and transistor sizes, 
respectively.  The bias current value (30µA, see Table I) 
ensures a very low distortion in the processing signals range 
[9].  The resistor value in the middle of the structure is 
66.66kΩ. 

B. Non-Linear Activation Function 
Activation function circuit consists of a class AB current 

conveyor (Fig. 3), similar to the circuit proposed in [10].  
Circuit output has tanh type behaviour.  Design 
characteristics and transistor dimensions are shown in 
Tables III and IV respectively. 
 

TABLE I 
CURRENT FOLLOWER DESIGN CHARACTERISTIS 

±Vcc(V) ±2 
Ibias(µA) 30 

Vgs(V) ±1 
Vds(V) ±1 

 
TABLE II 

CURRENT FOLLOWER TRANSISTOR DIMENSIONS 

Transistor W(µm) L(µm) 

A1, A2, A3, A4, A5  4.25 0.3 
A6, A7, A8, A9  13.00 0.3 

A10, A11, A12, A13  48.15 0.3 
A14, A15, A16, A17, A18  0.85 0.3 
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Fig. 3. Class AB activation function. 

III. BUILDING BLOCKS SIMULATION 
Artificial neuron circuit simulation was carried out using 

two different simulators (Spectre and Hspice) using 
Cadence Design Framework, obtaining similar results. 

A. Mixed Signal Four-Quadrant Multiplier Results 
Table V shows results of the current follower simulation. 

As can be seen, the circuit shows a 5% loss current (slope is 
not 1) that can be reduced replacing the simple current 
mirrors used in the design with cascode current mirrors.  On 
the other hand, offset effects are very low. 

The mixed-mode multiplier behaviour has been 
numerically modelled using Matlab.  Practical multiplier 
operation can be represented by: 
 

pwpout 0136726.0974865.0 −=  (3)
 

where w is the digital weight and p is the analog current 
 

TABLE III 
ACTIVATION FUNCTION DESIGN CHARACTERISTICS 

±Vcc(V)  ±2 
Ia(µA)  5 
Ib(µA)  50 
Vgs(V)  ±1 
Vds(V)  ±1 

 
TABLE IV 

ACTIVATION FUNCTION TRANSISTORS DIMENSIONS 

Transistor W(µm) L(µm) 

B1, B2, B3  0.9 0.3 
B4  5.35 0.3 

B5, B6, B7  6.9 0.3 
B8, B9  1.9 0.3 

B10  2.85 0.3 
B11  0.65 0.3 

B12, B13  8.7 0.3 
B14  0.7 0.3 
B15  0.6 2.1 

B16, B17, B18  0.6 1.7 
B19  1.2 0.3 

B20, B21, B22  1.4 0.3 

 
TABLE V 

CURRENT FOLLOWER SIMULATION RESULTS 
Ioff(nA) 0.74 
Voff(µV) 65 

Slope 0.951166 

 



input to the analog-digital multiplier.  Results are shown in 
Fig. 4.  Fig. 5 presents the differences between the ideal 
operation and the realistic operation of the multiplier. 

B. Non-Linear Activation Function Results  
Non-linear output function is modelled using a 1-15-1 

Multilayer Perceptron (MLP).  Simulation and ideal tanh 
output functions are shown in Fig. 6.  Differences between 
simulated circuit and ideal output are presented in Figure 7. 

IV. REAL APPLICATION EXAMPLE: SENSOR LINEARIZATION 
The following example has been widely analyzed in the 

literature [11], [12], [13].  It consists in conditioning the 
response of a nonlinear sensor with sigmoid output using a 
MLP.  There are diverse sensors with this output 
characteristic form (such as giant magnetoresistive sensors 
[14]).  In this work, we have used the well-characterized 
negative temperature coefficient resistor (NTC) connected 
on a resistive divider, which voltage output is shown in Fig. 
8.  In this case, the MLP output provides the correction that 
must be added to the sensor characteristic to linearize the 
total behaviour. 

In order to verify that results are independent of the 
sample we used four datasets from four different NTC 
sensors, training the network for each one of them. 

Patterns of each NTC consist of 71 sensor output voltages 
collected in the 253-323K temperature range. 

For each NTC, data are divided in two datasets, 
consisting of 61 patterns for the learning process and 10 
patterns for the verification phase.  These validation patterns 
are randomly selected from the whole dataset. 

A. Network Architecture 
Previous works [3] show that a 1-1-3-1 MLP network 

architecture gives the best performance results in this case.  
The used neural network scheme is shown in Figure 9.  
Output function of the first hidden and output layer neurons 
are linear, while the neurons in the second hidden layer have 
the designed tanh circuit as output function.  All of them use 
the analog-digital multiplier presented in Section II.  The 
use of the realistic multiplier model and non-ideal activation 
function makes necessary to double the number of hidden 
neurons, compared to the use of ideal elements in the neuron 
definition.  On the other hand, accuracy in digital weights 
must be carefully selected.  Considering circuit size 
restrictions and minimum accuracy, an 8-bit representation 
of the weights (with positive and negative codification) 
gives a good system performance. 

B. Training Results 
The resulting artificial neural network is trained on a 

computer.  Our experience confirms that learning algorithms 
based on error back-propagation have demonstrated a worse 
efficacy in network weight adaptation in systems with high 
non-linearities and offsets, compared to perturbative 
techniques [15], [16] These methods estimate output error 
variations due to small random weight changes.  If a random 
variation makes the error to decrease, the weight change is 
accepted; otherwise, weight remains unchanged.  This 
methodology is not dependent on the arithmetic operations 
 

 
Fig. 4. Mixed-mode four-quadrant multiplier output. 
 

 
Fig. 5 Differences between the ideal and simulated mixed-mode multiplier. 
 

 
Fig. 6. Non-linear output function: Ideal (dotted line) and practical
(continuous line). 
 

 
Fig. 7. Differences between the practical and ideal operation of the 
activation function. 
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Fig. 8. NTC output voltage (connected on a resistive divider). 

 
carried out by the artificial neuron.  However, in standard 
back-propagation algorithms the use of different arithmetic 
operations can change drastically the network learning 
behaviour. 

Although there are proposed in the literature several 
parallel perturbative algorithms developed for systems with 
digital weight storage [17], the learning algorithm applied in 
this work is based on the classical serial weight-perturbation 
algorithm presented in [18]. 

Fig. 10 shows the corrected output voltage compared to 
the ideal expected output (dashed line) after 8-bit resolution 
weight discretization.  As this figure shows, the output error 
remains lesser than 1K between 250K and 310K. 

The ANN generalization ability is analyzed using the 
validation dataset and the corresponding network output.  In 
all four examples, output error keeps lower than 1K in the 
same range from 250K to 310K (Figure 11). 

V. CONCLUSIONS AND FUTURE WORK 
In this paper the mixed signal class AB neuron basic 
building blocks are presented. These elements are: a four-
quadrant analog-digital multiplier (made of a 7-bit 
transistor-based current ladder and a class AB current 
follower) and an activation function. All these elements 
have been designed using the 0.35µm AMS design kit.  In 
order to validate the use of these circuits in real-world 
applications, a neural network model was developed using 
the simulation results of these basic elements.  A classic 
linearization problem was tackle: four different temperature 
sensors linearization.  Results show an application range 
extension (error lower than 1 degree) of 50% or more. 
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Fig. 9. MLP architecture. 

Fig. 10. Corrected output voltage versus ideal linear output. 
 

The next goal is to reduce the output error drift at the end 
of the sensor span (from 310K to 325K), modifying the 
design and minimizing the effects of mismatching and 
offsets. 
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